Las cookies se utilizan en nuestro sitio web. Algunas de ellas son obligatorias, mientras que otras nos permiten mejorar su experiencia de usuario en nuestra web.
Se requieren cookies esenciales para las funciones básicas de la web. Esto asegura que la web funcione correctamente .
Nombre | fe_typo_user |
---|---|
Proveedor | TYPO3 |
Propósito | Esta cookie es una cookie de sesión estándar de TYPO3. Guarda los datos de acceso entrados para un área cerrada cuando un usuario inicia sesión . |
Ciclo de vida de las cookies | Fin de sesión |
Nombre | be_typo_user |
---|---|
Proveedor | TYPO3 |
Propósito | Esta cookie le dice al sitio web si un visitante ha iniciado sesión en el Typo3 backend y tiene los derechos para administrarlos. |
Ciclo de vida de las cookies | Fin de sesión |
Nombre | PHPSESSID |
---|---|
Proveedor | php |
Propósito | Identificador de datos PHP, establecido cuando se utiliza el método de sesión PHP (). |
Ciclo de vida de las cookies | Fin de sesión |
Nombre | __utma |
---|---|
Proveedor | |
Propósito | En esta cookie, la información principal se almacena para realizar seguimiento a los visitantes. En esta cookie, se almacena una única identificación de visitante, la fecha y hora de la primera visita, la hora a la que se inicia la visita activa y se almacena el número de todos los visitantes a la pagina web a traves de un visitante único . |
Ciclo de vida de las cookies | 2 años |
Nombre | __utmc |
---|---|
Proveedor | |
Propósito | Esta cookie es antigua y ya no la utiliza Google Analytics. Para la compatibilidad con versiones anteriores de páginas que todavía usan el código de seguimiento urchin.js, esta cookie todavía se escribe y caduca cuando se cierra el navegador. Sin embargo, no es necesario tener en cuenta esta cookie al depurar y utilizar el nuevo código de seguimiento ga.js . |
Ciclo de vida de las cookies | Sesión |
Nombre | __utmz |
---|---|
Proveedor | |
Propósito | Esta cookie es la cookie de recursos del visitante. Contiene todos los recursos del visitante Información de la visita actual, también información transmitida a través de parámetros de seguimiento de campaña. Esta cookie también almacena si la fuente del visitante de la última visita fue diferente de la actual. Si no se puede determinar la información sobre la fuente del visitante, la cookie no se modifica. De esta manera, Google Analytics puede asociar información de visitantes, como conversiones y transacciones de comercio electrónico, con una fuente de visitantes. La cookie no contiene información histórica sobre fuentes de visitantes anteriores. |
Ciclo de vida de las cookies | 6 meses |
Nombre | _ga |
---|---|
Proveedor | Google Tag Manager Google |
Propósito | Registra una identificación única que se utiliza para generar datos estadísticos sobre cómo el visitante usa el sitio web . |
Ciclo de vida de las cookies | 2 años |
Nombre | _gid |
---|---|
Proveedor | |
Propósito | Utilizado por Google Analytics para limitar la tasa de solicitud. |
Ciclo de vida de las cookies | 1 día |
Nombre | _ym_d |
---|---|
Proveedor | Yandex |
Propósito | Contiene la fecha de la primera visita del visitante al sitio web. |
Ciclo de vida de las cookies | 1 año |
Nombre | _ym_isad |
---|---|
Proveedor | Yandex |
Propósito | Determina si un usuario tiene bloqueadores de anuncios. |
Ciclo de vida de las cookies | 2 días |
Nombre | _ym_uid |
---|---|
Proveedor | Yandex |
Propósito | Se usa para identificar a los usuarios del sitio |
Ciclo de vida de las cookies | 1 año |
Cross Beater Mill - cast iron grinding insert
PULVERISETTE 16
The Cross Beater Mill PULVERISETTE 16 is equipped with a grinding insert and cross beater made of cast iron, and impact plates made of hardened steel. A 5 litre collecting vessel with filter hose is also included.
Also available are bottom sieves made of stainless steel in various sizes and perforations and for the comminution of large quantities a special 30 litre collecting vessel with filter hose.
The element analysis for grinding insert, cross beater and Impact plates are found here
Please note: For this FRITSCH mill, you require at least bottom sieve.
For the PULVERISETTE 16 are bottom sieves made of stainless steel either in trapezoidal or round perforations in various sizes available. In general, the finer the desired final fineness, the smaller the perforation of the bottom sieve should be; the larger the perforation, the higher the throughput.
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The combination of the Cross Beater Mill with the high-performance Cyclone separator enable a simple cleaning and feeding, the use of finer bottom sieves for achieving a higher final fineness, increases the throughput and reduces the thermal load of the samples – even for materials, which are otherwise difficult to grind. Select Cyclone separator and accessories.
The FRITSCH high-performance Cyclone separator completely made of stainless steel 304 is indispensable in many industries. Due to its high surface quality, it offers enhanced resistance to corrosive media such as alkalis and acids and is especially easy to clean with a wide range of possible cleaning agents, without leaving any residues. The comminuted sample is drawn into a screwed-on collecting vessel or in a smaller sample glass, in which it can also be transported and stored. In addition, it can be completely dismantled, fully emptied, flooded and sterilised, and thus offers reliable protection against cross-contamination.
The advantages of the high-performance Cyclone separator at a glance
- Faster throughput
- Improved discharge of material from the grinding chamber
- Additional strong cooling of the grinding material and grinding parts
- Efficient size reduction of temperature-sensitive samples, electrostatically-charged plastics or powder coatings
- Ideal for light materials, small sample quantities and finer sieve sizes
- Highly efficient continuous comminution of large quantities
General specifications | |
Material | Stainless steel – 1.4301 |
ISO/EN/DIN code | X5CrNi1810 |
Chemical composition | |
Element | Share % |
Iron – Fe | 66.805 |
Carbon – C | 0.070 |
Silicon – Si | 1.000 |
Manganese – Mn | 2.000 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.030 |
Chromium – Cr | 19.5 |
Nickel – Ni | 10.5 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 7.8 g/cm³ |
Hardness | HRB 96 |
Sample glass 1 litre for sample exhaustion with the high-performance Cyclone separator.
The sample glass with 2 litres volume is recommended for sample exhaustion with the high-performance Cyclone separator for sample discharges larger than 1000 ml, since only a 1 litre sample glass is included in the delivery of the high-performance Cyclone separator.
The sample glass with 5 litres volume is recommended for sample exhaustion with the high-performance Cyclone separator for sample discharges larger than 1000 ml, since only a 1 litre sample glass is included in the delivery of the high-performance Cyclone separator.
The collection vessel 20 litres is recommended for sample exhaustion with the high-performance Cyclone separator for sample discharges larger than 1000 ml, since only a 1 litre sample glass is included in the delivery of the high-performance Cyclone separator.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The collection vessel 60 litres is recommended for sample exhaustion with the high-performance Cyclone separator for sample discharges larger than 1000 ml, since only a 1 litre sample glass is included in the delivery of the high-performance Cyclone separator.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The exhaust system, dust category "M" according to DIN EN 60335-2-69 for 230 V/1~, 50/60 Hz, 1600 Watt is versatile:
For combination with the high performance and small volume cyclones.
To operate the FRITSCH Cyclones you need an exhaust system. The strong airflow ensures simple feeding, increases throughput, and reduces the thermal load of the samples. The high performance and small volume Cyclone separator can be combined with Universal Cutting Mills PULVERISETTE 19, the Variable Speed Rotor Mill PULVERISETTE 14 premium line and classic line. The small volume cyclone can also be combined with the Variable Speed Rotor Mill PULVERISETE 14 premium line and classic line even for passive utilisation – without sample exhaust.
The high-performance cyclone is ideal for combination with the Universal Cutting Mills PULVERISETTE 19 large, the Cross Beater Mill PULVERISETTE 16 and the Disk Mill PULVERISETTE 13 premium line for optimal sample extraction and for comminution of larger quantities.
For cooling of the Variable Speed Rotor Mill PULVERISETTE 14 premium line
By connecting the exhaust system with the connecting piece order no. 14.4214.00, the cooling of the mill can easily be enhanced.
For connecting to Disk Mill PULVERISETTE 13 premium line
The exhaust is simply connected to the PULVERISETTE 13 premium line and operated via a start and stop button on the instrument – for dust free comminution.
For connecting to the Jaw Crusher PULVERISETTE 1, Modell I + II classic line
Simply connect the exhaust system to the integrated connection of the PULVERISETTE 1. Fine dust arising during comminution is automatically removed. The exhaust system is also very useful when cleaning the grinding parts.
For connecting to the Disk Mill PULVERISETTE 13 classic line
The exhaust system can be easily connected to the PULVERISETTE 13 classic line. Fine dust arising during comminution is automatically removed. The exhaust system is also very useful when cleaning the grinding parts.
For exhaustion of the sample during dry measurement with the Laser Particle Sizers ANALYSETTE 22 NeXT
An exhaust system is necessary to ensure automatic sample exhaustion during dry measurement. When the measurement is completed it can also be easily used to manually clean the feeder.
Please note that the exhaust system article no. 43.9070.00, is not equipped with a fine filter and therefore dust may escape. Please consider the valid occupational health and safety regulations. This exhaust system is mostly recommended for dust-free grinding and the vacuuming of during the process developing fine dust in the upper part of the grinding chamber and for the cleaning of the grinding parts.
For vacuuming of the sample during dry measurement with the Laser Particle Sizers ANALYSETTE 22 NeXT, we recommended we recommend the exhaust system article no. 43.9060.00, which is equipped with a hose and an ultra-fine filter of dust class "H" according to DIN EN 60335-2-69, so that the escape of fine dust is reduced.
1 pack = 5 pieces
One pack is included in the scope of delivery of the exhaust system (article No. 43.9070.00).
These fleece filter bags should be used for the vacuuming off of fine, dry materials.
For the vacuuming off of coarse, wet materials are plastic bags available (article no. 43.9052.00).
1 pack = 5 pieces
One pack is included in the order of the exhaust system (article No. 43.9070.00).
These plastic bags should be used for the vacuuming off of coarse, wet materials.
For the vacuuming off of fine, dry materials are paper filter bags available (article no. 43.9055.00).
The standard equipment delivered with the PULVERISETTE 16 includes a cloth filter hose between the mill and the 5 litre collecting vessel that ensures a constant airflow in the grinding chamber; accelerates the throughput and prevents blockages – for fast, gentle comminution.
We also offer a 30 litre collecting vessel for grinding larger quantities.
Combine your PULVERISETTE 16 with a support stand for a stand-alone instrument that you can place anywhere. A certificate for IQ/OQ documentation is also available.
Stand for free installation of the following devices:
Universal Cutting Mill PULVERISETTE 19 variable speed 300-3000 rpm
Universal Cutting Mill PULVERISETTE 19 variable speed 50-700 rpm
Universal Cutting Mill PULVERISETTE 19 variable speed 50-700 rpm large
Universal Cutting Mill PULVERISETTE 19 variable speed 300-3000 rpm Large
Cross Beater Mill PULVERISETTE 16 with grinding insert made of cast iron
Cross Beater Mill PULVERISETTE 16 with grinding insert made of stainless steel
The PULVERISETTE 19 is shown as an example in the photo.
As standard the PULVERISETTE 16 is delivered with a collecting vessel 5 litres. For grinding large quantities this collecting vessel with a capacity of 26 litres and filter hose is recommended.
IQ/OQ documentation (questionnaire format - implementation by customer) for the independent utilization for the support of instrument qualification in the quality management system for the Cross Beater Mill PULVERISETTE 16.